Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(({x}^{2}) - 3x)}^{cos(2x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (x^{2} - 3x)^{cos(2x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (x^{2} - 3x)^{cos(2x)}\right)}{dx}\\=&((x^{2} - 3x)^{cos(2x)}((-sin(2x)*2)ln(x^{2} - 3x) + \frac{(cos(2x))(2x - 3)}{(x^{2} - 3x)}))\\=&-2(x^{2} - 3x)^{cos(2x)}ln(x^{2} - 3x)sin(2x) + \frac{2x(x^{2} - 3x)^{cos(2x)}cos(2x)}{(x^{2} - 3x)} - \frac{3(x^{2} - 3x)^{cos(2x)}cos(2x)}{(x^{2} - 3x)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return