Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(({x}^{2}) - 3x)}^{(cos(2)x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (x^{2} - 3x)^{(xcos(2))}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (x^{2} - 3x)^{(xcos(2))}\right)}{dx}\\=&((x^{2} - 3x)^{(xcos(2))}((cos(2) + x*-sin(2)*0)ln(x^{2} - 3x) + \frac{(xcos(2))(2x - 3)}{(x^{2} - 3x)}))\\=&(x^{2} - 3x)^{(xcos(2))}ln(x^{2} - 3x)cos(2) + \frac{2x^{2}(x^{2} - 3x)^{(xcos(2))}cos(2)}{(x^{2} - 3x)} - \frac{3x(x^{2} - 3x)^{(xcos(2))}cos(2)}{(x^{2} - 3x)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return