There are 1 questions in this calculation: for each question, the 1 derivative of S is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({({s}^{2} + {h}^{2})}^{\frac{1}{2}})}{s}\ with\ respect\ to\ S:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{(s^{2} + h^{2})^{\frac{1}{2}}}{s}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{(s^{2} + h^{2})^{\frac{1}{2}}}{s}\right)}{dS}\\=&\frac{(\frac{\frac{1}{2}(0 + 0)}{(s^{2} + h^{2})^{\frac{1}{2}}})}{s} + 0\\=&\frac{0}{2}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !