Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of y is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {2}^{y}\ with\ respect\ to\ y:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {2}^{y}\right)}{dy}\\=&({2}^{y}((1)ln(2) + \frac{(y)(0)}{(2)}))\\=&{2}^{y}ln(2)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( {2}^{y}ln(2)\right)}{dy}\\=&({2}^{y}((1)ln(2) + \frac{(y)(0)}{(2)}))ln(2) + \frac{{2}^{y}*0}{(2)}\\=&{2}^{y}ln^{2}(2)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return