There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{{x}^{\frac{3}{2}}sin(1)}{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{\frac{1}{2}}sin(1)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{\frac{1}{2}}sin(1)\right)}{dx}\\=&\frac{\frac{1}{2}sin(1)}{x^{\frac{1}{2}}} + x^{\frac{1}{2}}cos(1)*0\\=&\frac{sin(1)}{2x^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !