Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{-((({e}^{3}x)sin(5x)) - (({e}^{3}x)cos(5x)))}{16}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-1}{16}xe^{3}sin(5x) + \frac{1}{16}xe^{3}cos(5x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-1}{16}xe^{3}sin(5x) + \frac{1}{16}xe^{3}cos(5x)\right)}{dx}\\=&\frac{-1}{16}e^{3}sin(5x) - \frac{1}{16}x*3e^{2}*0sin(5x) - \frac{1}{16}xe^{3}cos(5x)*5 + \frac{1}{16}e^{3}cos(5x) + \frac{1}{16}x*3e^{2}*0cos(5x) + \frac{1}{16}xe^{3}*-sin(5x)*5\\=&\frac{-e^{3}sin(5x)}{16} - \frac{5xe^{3}cos(5x)}{16} + \frac{e^{3}cos(5x)}{16} - \frac{5xe^{3}sin(5x)}{16}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return