There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ -ln((1 - x){e}^{\frac{1}{10}})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = -ln(e^{\frac{1}{10}} - xe^{\frac{1}{10}})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -ln(e^{\frac{1}{10}} - xe^{\frac{1}{10}})\right)}{dx}\\=&\frac{-(\frac{\frac{1}{10}*0}{e^{\frac{9}{10}}} - e^{\frac{1}{10}} - \frac{x*\frac{1}{10}*0}{e^{\frac{9}{10}}})}{(e^{\frac{1}{10}} - xe^{\frac{1}{10}})}\\=&\frac{e^{\frac{1}{10}}}{(e^{\frac{1}{10}} - xe^{\frac{1}{10}})}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !