Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{(b + 1)x}{(b + {x}^{b}*2)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{bx}{(b + 2{x}^{b})} + \frac{x}{(b + 2{x}^{b})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{bx}{(b + 2{x}^{b})} + \frac{x}{(b + 2{x}^{b})}\right)}{dx}\\=&(\frac{-(0 + 2({x}^{b}((0)ln(x) + \frac{(b)(1)}{(x)})))}{(b + 2{x}^{b})^{2}})bx + \frac{b}{(b + 2{x}^{b})} + (\frac{-(0 + 2({x}^{b}((0)ln(x) + \frac{(b)(1)}{(x)})))}{(b + 2{x}^{b})^{2}})x + \frac{1}{(b + 2{x}^{b})}\\=&\frac{-2b^{2}{x}^{b}}{(b + 2{x}^{b})^{2}} - \frac{2b{x}^{b}}{(b + 2{x}^{b})^{2}} + \frac{b}{(b + 2{x}^{b})} + \frac{1}{(b + 2{x}^{b})}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-2b^{2}{x}^{b}}{(b + 2{x}^{b})^{2}} - \frac{2b{x}^{b}}{(b + 2{x}^{b})^{2}} + \frac{b}{(b + 2{x}^{b})} + \frac{1}{(b + 2{x}^{b})}\right)}{dx}\\=&-2(\frac{-2(0 + 2({x}^{b}((0)ln(x) + \frac{(b)(1)}{(x)})))}{(b + 2{x}^{b})^{3}})b^{2}{x}^{b} - \frac{2b^{2}({x}^{b}((0)ln(x) + \frac{(b)(1)}{(x)}))}{(b + 2{x}^{b})^{2}} - 2(\frac{-2(0 + 2({x}^{b}((0)ln(x) + \frac{(b)(1)}{(x)})))}{(b + 2{x}^{b})^{3}})b{x}^{b} - \frac{2b({x}^{b}((0)ln(x) + \frac{(b)(1)}{(x)}))}{(b + 2{x}^{b})^{2}} + (\frac{-(0 + 2({x}^{b}((0)ln(x) + \frac{(b)(1)}{(x)})))}{(b + 2{x}^{b})^{2}})b + 0 + (\frac{-(0 + 2({x}^{b}((0)ln(x) + \frac{(b)(1)}{(x)})))}{(b + 2{x}^{b})^{2}})\\=&\frac{8b^{3}{x}^{(2b)}}{(b + 2{x}^{b})^{3}x} - \frac{2b^{3}{x}^{b}}{(b + 2{x}^{b})^{2}x} + \frac{8b^{2}{x}^{(2b)}}{(b + 2{x}^{b})^{3}x} - \frac{4b^{2}{x}^{b}}{(b + 2{x}^{b})^{2}x} - \frac{2b{x}^{b}}{(b + 2{x}^{b})^{2}x}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return