Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{-8phc}{({x}^{5})(e^{\frac{hc}{ktx}})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-8phc}{x^{5}e^{\frac{hc}{ktx}}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-8phc}{x^{5}e^{\frac{hc}{ktx}}}\right)}{dx}\\=&\frac{-8phc*-5}{x^{6}e^{\frac{hc}{ktx}}} - \frac{8phc*-e^{\frac{hc}{ktx}}hc*-1}{x^{5}e^{{\frac{hc}{ktx}}*{2}}ktx^{2}}\\=&\frac{40phc}{x^{6}e^{\frac{hc}{ktx}}} - \frac{8ph^{2}c^{2}}{ktx^{7}e^{\frac{hc}{ktx}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return