Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{-8phc}{({x}^{5})(e^{\frac{hc}{ktx}} - 1)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-8phc}{(e^{\frac{hc}{ktx}} - 1)x^{5}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-8phc}{(e^{\frac{hc}{ktx}} - 1)x^{5}}\right)}{dx}\\=&\frac{-8(\frac{-(\frac{e^{\frac{hc}{ktx}}hc*-1}{ktx^{2}} + 0)}{(e^{\frac{hc}{ktx}} - 1)^{2}})phc}{x^{5}} - \frac{8phc*-5}{(e^{\frac{hc}{ktx}} - 1)x^{6}}\\=&\frac{-8ph^{2}c^{2}e^{\frac{hc}{ktx}}}{(e^{\frac{hc}{ktx}} - 1)^{2}ktx^{7}} + \frac{40phc}{(e^{\frac{hc}{ktx}} - 1)x^{6}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return