There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {e^{-(x - 1)}}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = e^{{\left(-x + 1\right)}*{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( e^{{\left(-x + 1\right)}*{2}}\right)}{dx}\\=&2e^{-x + 1}e^{-x + 1}(-1 + 0)\\=&-2e^{{\left(-x + 1\right)}*{2}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( -2e^{{\left(-x + 1\right)}*{2}}\right)}{dx}\\=&-2*2e^{-x + 1}e^{-x + 1}(-1 + 0)\\=&4e^{{\left(-x + 1\right)}*{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !