There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (1 - \frac{(1 + k)x}{T})W(1 - Q(x))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - WQx + W - \frac{Wx}{T} + \frac{WQx^{2}}{T} - \frac{kWx}{T} + \frac{kWQx^{2}}{T}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - WQx + W - \frac{Wx}{T} + \frac{WQx^{2}}{T} - \frac{kWx}{T} + \frac{kWQx^{2}}{T}\right)}{dx}\\=& - WQ + 0 - \frac{W}{T} + \frac{WQ*2x}{T} - \frac{kW}{T} + \frac{kWQ*2x}{T}\\=& - WQ + \frac{2WQx}{T} - \frac{W}{T} + \frac{2kWQx}{T} - \frac{kW}{T}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !