There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {e}^{(5x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{(5x)}\right)}{dx}\\=&({e}^{(5x)}((5)ln(e) + \frac{(5x)(0)}{(e)}))\\=&5{e}^{(5x)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 5{e}^{(5x)}\right)}{dx}\\=&5({e}^{(5x)}((5)ln(e) + \frac{(5x)(0)}{(e)}))\\=&25{e}^{(5x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !