Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(e^{3}x - e^{-3}x)}{(e^{x} - e^{-x})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{xe^{3}}{(e^{x} - e^{-x})} - \frac{xe^{-3}}{(e^{x} - e^{-x})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{xe^{3}}{(e^{x} - e^{-x})} - \frac{xe^{-3}}{(e^{x} - e^{-x})}\right)}{dx}\\=&(\frac{-(e^{x} - e^{-x}*-1)}{(e^{x} - e^{-x})^{2}})xe^{3} + \frac{e^{3}}{(e^{x} - e^{-x})} + \frac{xe^{3}*0}{(e^{x} - e^{-x})} - (\frac{-(e^{x} - e^{-x}*-1)}{(e^{x} - e^{-x})^{2}})xe^{-3} - \frac{e^{-3}}{(e^{x} - e^{-x})} - \frac{xe^{-3}*0}{(e^{x} - e^{-x})}\\=&\frac{-xe^{x}e^{3}}{(e^{x} - e^{-x})^{2}} - \frac{xe^{-x}e^{3}}{(e^{x} - e^{-x})^{2}} + \frac{e^{3}}{(e^{x} - e^{-x})} + \frac{xe^{x}e^{-3}}{(e^{x} - e^{-x})^{2}} + \frac{xe^{-x}e^{-3}}{(e^{x} - e^{-x})^{2}} - \frac{e^{-3}}{(e^{x} - e^{-x})}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return