There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ -{(1 - x)}^{r}log_{a}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = -(-x + 1)^{r}log_{a}^{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -(-x + 1)^{r}log_{a}^{x}\right)}{dx}\\=&-((-x + 1)^{r}((0)ln(-x + 1) + \frac{(r)(-1 + 0)}{(-x + 1)}))log_{a}^{x} - (-x + 1)^{r}(\frac{(\frac{(1)}{(x)} - \frac{(0)log_{a}^{x}}{(a)})}{(ln(a))})\\=&\frac{r(-x + 1)^{r}log_{a}^{x}}{(-x + 1)} - \frac{(-x + 1)^{r}}{xln(a)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !