There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ e^{\frac{1}{x}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( e^{\frac{1}{x}}\right)}{dx}\\=&\frac{e^{\frac{1}{x}}*-1}{x^{2}}\\=&\frac{-e^{\frac{1}{x}}}{x^{2}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-e^{\frac{1}{x}}}{x^{2}}\right)}{dx}\\=&\frac{--2e^{\frac{1}{x}}}{x^{3}} - \frac{e^{\frac{1}{x}}*-1}{x^{2}x^{2}}\\=&\frac{2e^{\frac{1}{x}}}{x^{3}} + \frac{e^{\frac{1}{x}}}{x^{4}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{2e^{\frac{1}{x}}}{x^{3}} + \frac{e^{\frac{1}{x}}}{x^{4}}\right)}{dx}\\=&\frac{2*-3e^{\frac{1}{x}}}{x^{4}} + \frac{2e^{\frac{1}{x}}*-1}{x^{3}x^{2}} + \frac{-4e^{\frac{1}{x}}}{x^{5}} + \frac{e^{\frac{1}{x}}*-1}{x^{4}x^{2}}\\=&\frac{-6e^{\frac{1}{x}}}{x^{4}} - \frac{6e^{\frac{1}{x}}}{x^{5}} - \frac{e^{\frac{1}{x}}}{x^{6}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{-6e^{\frac{1}{x}}}{x^{4}} - \frac{6e^{\frac{1}{x}}}{x^{5}} - \frac{e^{\frac{1}{x}}}{x^{6}}\right)}{dx}\\=&\frac{-6*-4e^{\frac{1}{x}}}{x^{5}} - \frac{6e^{\frac{1}{x}}*-1}{x^{4}x^{2}} - \frac{6*-5e^{\frac{1}{x}}}{x^{6}} - \frac{6e^{\frac{1}{x}}*-1}{x^{5}x^{2}} - \frac{-6e^{\frac{1}{x}}}{x^{7}} - \frac{e^{\frac{1}{x}}*-1}{x^{6}x^{2}}\\=&\frac{24e^{\frac{1}{x}}}{x^{5}} + \frac{36e^{\frac{1}{x}}}{x^{6}} + \frac{12e^{\frac{1}{x}}}{x^{7}} + \frac{e^{\frac{1}{x}}}{x^{8}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !