Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {e}^{x}(x - ln(x) - e)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x{e}^{x} - {e}^{x}ln(x) - {e}^{x}e\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x{e}^{x} - {e}^{x}ln(x) - {e}^{x}e\right)}{dx}\\=&{e}^{x} + x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) - ({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))ln(x) - \frac{{e}^{x}}{(x)} - ({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))e - {e}^{x}*0\\=& - {e}^{x}ln(x) + x{e}^{x} - {e}^{x}e - \frac{{e}^{x}}{x} + {e}^{x}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return