Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 15 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 15th\ derivative\ of\ function\ {x}^{sqrt(2)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ \\ &\color{blue}{The\ 15th\ derivative\ of\ function:} \\=&\frac{87178291200{x}^{sqrt(2)}sqrt(2)}{x^{15}} - \frac{283465647360{x}^{sqrt(2)}sqrt(2)^{2}}{x^{15}} + \frac{392156797824{x}^{sqrt(2)}sqrt(2)^{3}}{x^{15}} - \frac{310989260400{x}^{sqrt(2)}sqrt(2)^{4}}{x^{15}} + \frac{159721605680{x}^{sqrt(2)}sqrt(2)^{5}}{x^{15}} - \frac{56663366760{x}^{sqrt(2)}sqrt(2)^{6}}{x^{15}} + \frac{14409322928{x}^{sqrt(2)}sqrt(2)^{7}}{x^{15}} - \frac{2681453775{x}^{sqrt(2)}sqrt(2)^{8}}{x^{15}} + \frac{368411615{x}^{sqrt(2)}sqrt(2)^{9}}{x^{15}} - \frac{37312275{x}^{sqrt(2)}sqrt(2)^{10}}{x^{15}} + \frac{2749747{x}^{sqrt(2)}sqrt(2)^{11}}{x^{15}} - \frac{143325{x}^{sqrt(2)}sqrt(2)^{12}}{x^{15}} + \frac{5005{x}^{sqrt(2)}sqrt(2)^{13}}{x^{15}} - \frac{105{x}^{sqrt(2)}sqrt(2)^{14}}{x^{15}} + \frac{{x}^{sqrt(2)}sqrt(2)^{15}}{x^{15}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return