There are 1 questions in this calculation: for each question, the 1 derivative of X is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {X}^{(5{X}^{6} + {X}^{3} + 2X + 60)}\ with\ respect\ to\ X:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {X}^{(5X^{6} + X^{3} + 2X + 60)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {X}^{(5X^{6} + X^{3} + 2X + 60)}\right)}{dX}\\=&({X}^{(5X^{6} + X^{3} + 2X + 60)}((5*6X^{5} + 3X^{2} + 2 + 0)ln(X) + \frac{(5X^{6} + X^{3} + 2X + 60)(1)}{(X)}))\\=&30X^{5}{X}^{(5X^{6} + X^{3} + 2X + 60)}ln(X) + 3X^{2}{X}^{(5X^{6} + X^{3} + 2X + 60)}ln(X) + 2{X}^{(5X^{6} + X^{3} + 2X + 60)}ln(X) + 5X^{5}{X}^{(5X^{6} + X^{3} + 2X + 60)} + X^{2}{X}^{(5X^{6} + X^{3} + 2X + 60)} + 2{X}^{(5X^{6} + X^{3} + 2X + 60)} + \frac{60{X}^{(5X^{6} + X^{3} + 2X + 60)}}{X}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !