Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ {X}^{5} + {X}^{2} + ln(3{X}^{3} + 5X - 6)cos(2X) + 10\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = X^{5} + X^{2} + ln(3X^{3} + 5X - 6)cos(2X) + 10\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( X^{5} + X^{2} + ln(3X^{3} + 5X - 6)cos(2X) + 10\right)}{dx}\\=&0 + 0 + \frac{(0 + 0 + 0)cos(2X)}{(3X^{3} + 5X - 6)} + ln(3X^{3} + 5X - 6)*-sin(2X)*0 + 0\\=&0\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return