There are 1 questions in this calculation: for each question, the 1 derivative of p is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (p - h + e(1 - \frac{(p - q)}{(a - 1)}) + (p - g + e(\frac{(p - q)}{(a - 1)} - q)))\ with\ respect\ to\ p:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{1}{0}(a - 1)pe - h + e + 2p + \frac{1}{0}(a - 1)qe - g - qe\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{1}{0}(a - 1)pe - h + e + 2p + \frac{1}{0}(a - 1)qe - g - qe\right)}{dp}\\=& - \frac{1}{0}(a - 1)e - \frac{1}{0}(a - 1)p*0 + 0 + 0 + 2 + \frac{1}{0}(a - 1)q*0 + 0 - q*0\\=& - \frac{(a - 1)e}{0} + 2\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !