Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 3 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ third\ derivative\ of\ function\ \frac{x}{(1 - px)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x}{(-px + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x}{(-px + 1)}\right)}{dx}\\=&(\frac{-(-p + 0)}{(-px + 1)^{2}})x + \frac{1}{(-px + 1)}\\=&\frac{px}{(-px + 1)^{2}} + \frac{1}{(-px + 1)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{px}{(-px + 1)^{2}} + \frac{1}{(-px + 1)}\right)}{dx}\\=&(\frac{-2(-p + 0)}{(-px + 1)^{3}})px + \frac{p}{(-px + 1)^{2}} + (\frac{-(-p + 0)}{(-px + 1)^{2}})\\=&\frac{2p^{2}x}{(-px + 1)^{3}} + \frac{2p}{(-px + 1)^{2}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{2p^{2}x}{(-px + 1)^{3}} + \frac{2p}{(-px + 1)^{2}}\right)}{dx}\\=&2(\frac{-3(-p + 0)}{(-px + 1)^{4}})p^{2}x + \frac{2p^{2}}{(-px + 1)^{3}} + 2(\frac{-2(-p + 0)}{(-px + 1)^{3}})p + 0\\=&\frac{6p^{3}x}{(-px + 1)^{4}} + \frac{6p^{2}}{(-px + 1)^{3}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return