Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 3 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ third\ derivative\ of\ function\ {e}^{{x}^{2022}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {e}^{x^{2022}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{x^{2022}}\right)}{dx}\\=&({e}^{x^{2022}}((2022x^{2021})ln(e) + \frac{(x^{2022})(0)}{(e)}))\\=&2022x^{2021}{e}^{x^{2022}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 2022x^{2021}{e}^{x^{2022}}\right)}{dx}\\=&2022*2021x^{2020}{e}^{x^{2022}} + 2022x^{2021}({e}^{x^{2022}}((2022x^{2021})ln(e) + \frac{(x^{2022})(0)}{(e)}))\\=&4086462x^{2020}{e}^{x^{2022}} + 4088484x^{4042}{e}^{x^{2022}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 4086462x^{2020}{e}^{x^{2022}} + 4088484x^{4042}{e}^{x^{2022}}\right)}{dx}\\=&4086462*2020x^{2019}{e}^{x^{2022}} + 4086462x^{2020}({e}^{x^{2022}}((2022x^{2021})ln(e) + \frac{(x^{2022})(0)}{(e)})) + 4088484*4042x^{4041}{e}^{x^{2022}} + 4088484x^{4042}({e}^{x^{2022}}((2022x^{2021})ln(e) + \frac{(x^{2022})(0)}{(e)}))\\=&8254653240x^{2019}{e}^{x^{2022}} + 24788478492x^{4041}{e}^{x^{2022}} + 8266914648x^{6063}{e}^{x^{2022}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return