Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{ln(x)}{(1 - {\frac{1}{x}}^{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{ln(x)}{(\frac{-1}{x^{2}} + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{ln(x)}{(\frac{-1}{x^{2}} + 1)}\right)}{dx}\\=&(\frac{-(\frac{--2}{x^{3}} + 0)}{(\frac{-1}{x^{2}} + 1)^{2}})ln(x) + \frac{1}{(\frac{-1}{x^{2}} + 1)(x)}\\=&\frac{-2ln(x)}{(\frac{-1}{x^{2}} + 1)^{2}x^{3}} + \frac{1}{(\frac{-1}{x^{2}} + 1)x}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return