There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ a{(1 - x + b)}^{t}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = a(-x + b + 1)^{t}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( a(-x + b + 1)^{t}\right)}{dx}\\=&a((-x + b + 1)^{t}((0)ln(-x + b + 1) + \frac{(t)(-1 + 0 + 0)}{(-x + b + 1)}))\\=&\frac{-at(-x + b + 1)^{t}}{(-x + b + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !