There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{x}{e^{x}} - \frac{(2 - x)}{e^{2 - x}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x}{e^{x}} - \frac{2}{e^{-x + 2}} + \frac{x}{e^{-x + 2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x}{e^{x}} - \frac{2}{e^{-x + 2}} + \frac{x}{e^{-x + 2}}\right)}{dx}\\=&\frac{1}{e^{x}} + \frac{x*-e^{x}}{e^{{x}*{2}}} - \frac{2*-e^{-x + 2}(-1 + 0)}{e^{{\left(-x + 2\right)}*{2}}} + \frac{1}{e^{-x + 2}} + \frac{x*-e^{-x + 2}(-1 + 0)}{e^{{\left(-x + 2\right)}*{2}}}\\=&\frac{1}{e^{x}} - \frac{x}{e^{x}} - \frac{1}{e^{-x + 2}} + \frac{x}{e^{-x + 2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !