There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ ln(x - 1) + x - 2\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(x - 1) + x - 2\right)}{dx}\\=&\frac{(1 + 0)}{(x - 1)} + 1 + 0\\=&\frac{1}{(x - 1)} + 1\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{1}{(x - 1)} + 1\right)}{dx}\\=&(\frac{-(1 + 0)}{(x - 1)^{2}}) + 0\\=&\frac{-1}{(x - 1)^{2}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{-1}{(x - 1)^{2}}\right)}{dx}\\=&-(\frac{-2(1 + 0)}{(x - 1)^{3}})\\=&\frac{2}{(x - 1)^{3}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{2}{(x - 1)^{3}}\right)}{dx}\\=&2(\frac{-3(1 + 0)}{(x - 1)^{4}})\\=&\frac{-6}{(x - 1)^{4}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !