There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(1 + \frac{{(1 - {x}^{2})}^{1}}{2})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(\frac{-1}{2}x^{2} + \frac{3}{2})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(\frac{-1}{2}x^{2} + \frac{3}{2})\right)}{dx}\\=&\frac{(\frac{-1}{2}*2x + 0)}{(\frac{-1}{2}x^{2} + \frac{3}{2})}\\=&\frac{-x}{(\frac{-1}{2}x^{2} + \frac{3}{2})}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !