Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{kx}{sqrt(ln(x))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{kx}{sqrt(ln(x))}\right)}{dx}\\=&\frac{k}{sqrt(ln(x))} + \frac{kx*-\frac{1}{2}}{(ln(x))(x)(ln(x))^{\frac{1}{2}}}\\=&\frac{k}{sqrt(ln(x))} - \frac{k}{2ln^{\frac{3}{2}}(x)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{k}{sqrt(ln(x))} - \frac{k}{2ln^{\frac{3}{2}}(x)}\right)}{dx}\\=&\frac{k*-\frac{1}{2}}{(ln(x))(x)(ln(x))^{\frac{1}{2}}} - \frac{k*\frac{-3}{2}}{2ln^{\frac{5}{2}}(x)(x)}\\=&\frac{-k}{2xln^{\frac{3}{2}}(x)} + \frac{3k}{4xln^{\frac{5}{2}}(x)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return