There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ (x - 2)ln(1 - x) - 2x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xln(-x + 1) - 2ln(-x + 1) - 2x\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xln(-x + 1) - 2ln(-x + 1) - 2x\right)}{dx}\\=&ln(-x + 1) + \frac{x(-1 + 0)}{(-x + 1)} - \frac{2(-1 + 0)}{(-x + 1)} - 2\\=&ln(-x + 1) - \frac{x}{(-x + 1)} + \frac{2}{(-x + 1)} - 2\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( ln(-x + 1) - \frac{x}{(-x + 1)} + \frac{2}{(-x + 1)} - 2\right)}{dx}\\=&\frac{(-1 + 0)}{(-x + 1)} - (\frac{-(-1 + 0)}{(-x + 1)^{2}})x - \frac{1}{(-x + 1)} + 2(\frac{-(-1 + 0)}{(-x + 1)^{2}}) + 0\\=& - \frac{x}{(-x + 1)^{2}} + \frac{2}{(-x + 1)^{2}} - \frac{2}{(-x + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !