There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(1 - x) + \frac{(x - 2)}{(1 - x)} - 2\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(-x + 1) + \frac{x}{(-x + 1)} - \frac{2}{(-x + 1)} - 2\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(-x + 1) + \frac{x}{(-x + 1)} - \frac{2}{(-x + 1)} - 2\right)}{dx}\\=&\frac{(-1 + 0)}{(-x + 1)} + (\frac{-(-1 + 0)}{(-x + 1)^{2}})x + \frac{1}{(-x + 1)} - 2(\frac{-(-1 + 0)}{(-x + 1)^{2}}) + 0\\=&\frac{x}{(-x + 1)^{2}} - \frac{2}{(-x + 1)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !