There are 1 questions in this calculation: for each question, the 3 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ third\ derivative\ of\ function\ -2{x}^{3} - 2{x}^{2} + x - 1\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = -2x^{3} - 2x^{2} + x - 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -2x^{3} - 2x^{2} + x - 1\right)}{dx}\\=&-2*3x^{2} - 2*2x + 1 + 0\\=&-6x^{2} - 4x + 1\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( -6x^{2} - 4x + 1\right)}{dx}\\=&-6*2x - 4 + 0\\=&-12x - 4\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( -12x - 4\right)}{dx}\\=&-12 + 0\\=&-12\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !