There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sqrt(\frac{(x - 1)(x - 2)}{((x - 3)(x - 4))})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sqrt(\frac{x^{2}}{(x^{2} - 7x + 12)} - \frac{3x}{(x^{2} - 7x + 12)} + \frac{2}{(x^{2} - 7x + 12)})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sqrt(\frac{x^{2}}{(x^{2} - 7x + 12)} - \frac{3x}{(x^{2} - 7x + 12)} + \frac{2}{(x^{2} - 7x + 12)})\right)}{dx}\\=&\frac{((\frac{-(2x - 7 + 0)}{(x^{2} - 7x + 12)^{2}})x^{2} + \frac{2x}{(x^{2} - 7x + 12)} - 3(\frac{-(2x - 7 + 0)}{(x^{2} - 7x + 12)^{2}})x - \frac{3}{(x^{2} - 7x + 12)} + 2(\frac{-(2x - 7 + 0)}{(x^{2} - 7x + 12)^{2}}))*\frac{1}{2}}{(\frac{x^{2}}{(x^{2} - 7x + 12)} - \frac{3x}{(x^{2} - 7x + 12)} + \frac{2}{(x^{2} - 7x + 12)})^{\frac{1}{2}}}\\=&\frac{-x^{3}}{(x^{2} - 7x + 12)^{2}(\frac{x^{2}}{(x^{2} - 7x + 12)} - \frac{3x}{(x^{2} - 7x + 12)} + \frac{2}{(x^{2} - 7x + 12)})^{\frac{1}{2}}} + \frac{13x^{2}}{2(x^{2} - 7x + 12)^{2}(\frac{x^{2}}{(x^{2} - 7x + 12)} - \frac{3x}{(x^{2} - 7x + 12)} + \frac{2}{(x^{2} - 7x + 12)})^{\frac{1}{2}}} + \frac{x}{(x^{2} - 7x + 12)(\frac{x^{2}}{(x^{2} - 7x + 12)} - \frac{3x}{(x^{2} - 7x + 12)} + \frac{2}{(x^{2} - 7x + 12)})^{\frac{1}{2}}} - \frac{25x}{2(x^{2} - 7x + 12)^{2}(\frac{x^{2}}{(x^{2} - 7x + 12)} - \frac{3x}{(x^{2} - 7x + 12)} + \frac{2}{(x^{2} - 7x + 12)})^{\frac{1}{2}}} - \frac{3}{2(x^{2} - 7x + 12)(\frac{x^{2}}{(x^{2} - 7x + 12)} - \frac{3x}{(x^{2} - 7x + 12)} + \frac{2}{(x^{2} - 7x + 12)})^{\frac{1}{2}}} + \frac{7}{(x^{2} - 7x + 12)^{2}(\frac{x^{2}}{(x^{2} - 7x + 12)} - \frac{3x}{(x^{2} - 7x + 12)} + \frac{2}{(x^{2} - 7x + 12)})^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !