There are 1 questions in this calculation: for each question, the 1 derivative of p is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ p - 1 + plog_{2}^{p} + (1 - p)log_{2}^{1 - p}\ with\ respect\ to\ p:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = plog_{2}^{p} - plog_{2}^{-p + 1} + log_{2}^{-p + 1} + p - 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( plog_{2}^{p} - plog_{2}^{-p + 1} + log_{2}^{-p + 1} + p - 1\right)}{dp}\\=&log_{2}^{p} + p(\frac{(\frac{(1)}{(p)} - \frac{(0)log_{2}^{p}}{(2)})}{(ln(2))}) - log_{2}^{-p + 1} - p(\frac{(\frac{(-1 + 0)}{(-p + 1)} - \frac{(0)log_{2}^{-p + 1}}{(2)})}{(ln(2))}) + (\frac{(\frac{(-1 + 0)}{(-p + 1)} - \frac{(0)log_{2}^{-p + 1}}{(2)})}{(ln(2))}) + 1 + 0\\=&log_{2}^{p} + \frac{1}{ln(2)} - log_{2}^{-p + 1} + \frac{p}{(-p + 1)ln(2)} - \frac{1}{(-p + 1)ln(2)} + 1\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !