There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {e}^{{x}^{\frac{1}{3}}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{{x}^{\frac{1}{3}}}\right)}{dx}\\=&({e}^{{x}^{\frac{1}{3}}}((({x}^{\frac{1}{3}}((0)ln(x) + \frac{(\frac{1}{3})(1)}{(x)})))ln(e) + \frac{({x}^{\frac{1}{3}})(0)}{(e)}))\\=&\frac{{e}^{x^{\frac{1}{3}}}}{3x^{\frac{2}{3}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !