Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(4 - 2{x}^{3})}{(x(4 + {x}^{3}))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{2x^{3}}{(x^{4} + 4x)} + \frac{4}{(x^{4} + 4x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{2x^{3}}{(x^{4} + 4x)} + \frac{4}{(x^{4} + 4x)}\right)}{dx}\\=& - 2(\frac{-(4x^{3} + 4)}{(x^{4} + 4x)^{2}})x^{3} - \frac{2*3x^{2}}{(x^{4} + 4x)} + 4(\frac{-(4x^{3} + 4)}{(x^{4} + 4x)^{2}})\\=&\frac{8x^{6}}{(x^{4} + 4x)^{2}} - \frac{8x^{3}}{(x^{4} + 4x)^{2}} - \frac{6x^{2}}{(x^{4} + 4x)} - \frac{16}{(x^{4} + 4x)^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return