There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(sqrt(1 + {x}^{2} + {x}^{4}) - sqrt(1 + {x}^{4}))}{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{sqrt(x^{2} + x^{4} + 1)}{x} - \frac{sqrt(x^{4} + 1)}{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{sqrt(x^{2} + x^{4} + 1)}{x} - \frac{sqrt(x^{4} + 1)}{x}\right)}{dx}\\=&\frac{-sqrt(x^{2} + x^{4} + 1)}{x^{2}} + \frac{(2x + 4x^{3} + 0)*\frac{1}{2}}{x(x^{2} + x^{4} + 1)^{\frac{1}{2}}} - \frac{-sqrt(x^{4} + 1)}{x^{2}} - \frac{(4x^{3} + 0)*\frac{1}{2}}{x(x^{4} + 1)^{\frac{1}{2}}}\\=&\frac{-sqrt(x^{2} + x^{4} + 1)}{x^{2}} + \frac{2x^{2}}{(x^{2} + x^{4} + 1)^{\frac{1}{2}}} - \frac{2x^{2}}{(x^{4} + 1)^{\frac{1}{2}}} + \frac{sqrt(x^{4} + 1)}{x^{2}} + \frac{1}{(x^{2} + x^{4} + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !