Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (1 - {k}^{2}){\frac{1}{(1 - 2{k}^{2})}}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{k^{2}}{(-2k^{2} + 1)^{2}} + \frac{1}{(-2k^{2} + 1)^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{k^{2}}{(-2k^{2} + 1)^{2}} + \frac{1}{(-2k^{2} + 1)^{2}}\right)}{dx}\\=& - (\frac{-2(0 + 0)}{(-2k^{2} + 1)^{3}})k^{2} + 0 + (\frac{-2(0 + 0)}{(-2k^{2} + 1)^{3}})\\=&0\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return