Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ x - \frac{({x}^{3} + 2{x}^{2} + 10x - 20)}{(3{x}^{2} + 4x + 10)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x - \frac{x^{3}}{(3x^{2} + 4x + 10)} - \frac{2x^{2}}{(3x^{2} + 4x + 10)} - \frac{10x}{(3x^{2} + 4x + 10)} + \frac{20}{(3x^{2} + 4x + 10)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x - \frac{x^{3}}{(3x^{2} + 4x + 10)} - \frac{2x^{2}}{(3x^{2} + 4x + 10)} - \frac{10x}{(3x^{2} + 4x + 10)} + \frac{20}{(3x^{2} + 4x + 10)}\right)}{dx}\\=&1 - (\frac{-(3*2x + 4 + 0)}{(3x^{2} + 4x + 10)^{2}})x^{3} - \frac{3x^{2}}{(3x^{2} + 4x + 10)} - 2(\frac{-(3*2x + 4 + 0)}{(3x^{2} + 4x + 10)^{2}})x^{2} - \frac{2*2x}{(3x^{2} + 4x + 10)} - 10(\frac{-(3*2x + 4 + 0)}{(3x^{2} + 4x + 10)^{2}})x - \frac{10}{(3x^{2} + 4x + 10)} + 20(\frac{-(3*2x + 4 + 0)}{(3x^{2} + 4x + 10)^{2}})\\=&\frac{6x^{4}}{(3x^{2} + 4x + 10)^{2}} + \frac{16x^{3}}{(3x^{2} + 4x + 10)^{2}} - \frac{3x^{2}}{(3x^{2} + 4x + 10)} + \frac{68x^{2}}{(3x^{2} + 4x + 10)^{2}} - \frac{4x}{(3x^{2} + 4x + 10)} - \frac{80x}{(3x^{2} + 4x + 10)^{2}} - \frac{10}{(3x^{2} + 4x + 10)} - \frac{80}{(3x^{2} + 4x + 10)^{2}} + 1\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return