There are 1 questions in this calculation: for each question, the 1 derivative of T is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (8.4 - 0.0018T + \frac{115}{sqrt(T)} - \frac{835}{T})e^{-6}\ with\ respect\ to\ T:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{115e^{-6}}{sqrt(T)} - 0.0018Te^{-6} + 8.4e^{-6} - \frac{835e^{-6}}{T}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{115e^{-6}}{sqrt(T)} - 0.0018Te^{-6} + 8.4e^{-6} - \frac{835e^{-6}}{T}\right)}{dT}\\=&\frac{115e^{-6}*0}{sqrt(T)} + \frac{115e^{-6}*-*0.5T^{\frac{1}{2}}}{(T)} - 0.0018e^{-6} - 0.0018Te^{-6}*0 + 8.4e^{-6}*0 - \frac{835*-e^{-6}}{T^{2}} - \frac{835e^{-6}*0}{T}\\=&\frac{-57.5e^{-6}}{T^{\frac{1}{2}}} - 0.0018e^{-6} + \frac{835e^{-6}}{T^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !