There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{ln({(2{x}^{4} - 4)}^{2})}{8}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{8}ln(4x^{8} - 16x^{4} + 16)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{8}ln(4x^{8} - 16x^{4} + 16)\right)}{dx}\\=&\frac{\frac{1}{8}(4*8x^{7} - 16*4x^{3} + 0)}{(4x^{8} - 16x^{4} + 16)}\\=&\frac{4x^{7}}{(4x^{8} - 16x^{4} + 16)} - \frac{8x^{3}}{(4x^{8} - 16x^{4} + 16)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !