There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(1 - cos(B))}{sin(B)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{cos(B)}{sin(B)} + \frac{1}{sin(B)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{cos(B)}{sin(B)} + \frac{1}{sin(B)}\right)}{dx}\\=& - \frac{-cos(B)*0cos(B)}{sin^{2}(B)} - \frac{-sin(B)*0}{sin(B)} + \frac{-cos(B)*0}{sin^{2}(B)}\\=&0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !