Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ wln(1 + abs + {(\frac{x}{c})}^{(a - 1)})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = wln(abs + (\frac{x}{c})^{(a - 1)} + 1)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( wln(abs + (\frac{x}{c})^{(a - 1)} + 1)\right)}{dx}\\=&\frac{w(0 + ((\frac{x}{c})^{(a - 1)}((0 + 0)ln(\frac{x}{c}) + \frac{(a - 1)(\frac{1}{c})}{(\frac{x}{c})})) + 0)}{(abs + (\frac{x}{c})^{(a - 1)} + 1)}\\=&\frac{wa(\frac{x}{c})^{(a - 1)}}{(abs + (\frac{x}{c})^{(a - 1)} + 1)x} - \frac{w(\frac{x}{c})^{(a - 1)}}{(abs + (\frac{x}{c})^{(a - 1)} + 1)x}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return