Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 56.063ln(x) - 12.387{(ln(x))}^{2} + 0.88{(ln(x))}^{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 0.88ln(x)ln(x)ln(x) - 12.387ln(x)ln(x) + 56.063ln(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 0.88ln(x)ln(x)ln(x) - 12.387ln(x)ln(x) + 56.063ln(x)\right)}{dx}\\=&\frac{0.88ln(x)ln(x)}{(x)} + \frac{0.88ln(x)ln(x)}{(x)} + \frac{0.88ln(x)ln(x)}{(x)} - \frac{12.387ln(x)}{(x)} - \frac{12.387ln(x)}{(x)} + \frac{56.063}{(x)}\\=&\frac{0.88ln(x)ln(x)}{x} + \frac{0.88ln(x)ln(x)}{x} + \frac{0.88ln(x)ln(x)}{x} - \frac{12.387ln(x)}{x} - \frac{12.387ln(x)}{x} + \frac{56.063}{x}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return