There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ 3{(1 + 4x)}^{\frac{1}{2}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 3(4x + 1)^{\frac{1}{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 3(4x + 1)^{\frac{1}{2}}\right)}{dx}\\=&3(\frac{\frac{1}{2}(4 + 0)}{(4x + 1)^{\frac{1}{2}}})\\=&\frac{6}{(4x + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{6}{(4x + 1)^{\frac{1}{2}}}\right)}{dx}\\=&6(\frac{\frac{-1}{2}(4 + 0)}{(4x + 1)^{\frac{3}{2}}})\\=&\frac{-12}{(4x + 1)^{\frac{3}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !