There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (30{x}^{2} + 89x + 65)ln(-4x - 5)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 30x^{2}ln(-4x - 5) + 89xln(-4x - 5) + 65ln(-4x - 5)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 30x^{2}ln(-4x - 5) + 89xln(-4x - 5) + 65ln(-4x - 5)\right)}{dx}\\=&30*2xln(-4x - 5) + \frac{30x^{2}(-4 + 0)}{(-4x - 5)} + 89ln(-4x - 5) + \frac{89x(-4 + 0)}{(-4x - 5)} + \frac{65(-4 + 0)}{(-4x - 5)}\\=&60xln(-4x - 5) - \frac{120x^{2}}{(-4x - 5)} + 89ln(-4x - 5) - \frac{356x}{(-4x - 5)} - \frac{260}{(-4x - 5)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !