There are 1 questions in this calculation: for each question, the 3 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ third\ derivative\ of\ function\ ln(36x + {e}^{(-5x)})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(36x + {e}^{(-5x)})\right)}{dx}\\=&\frac{(36 + ({e}^{(-5x)}((-5)ln(e) + \frac{(-5x)(0)}{(e)})))}{(36x + {e}^{(-5x)})}\\=&\frac{-5{e}^{(-5x)}}{(36x + {e}^{(-5x)})} + \frac{36}{(36x + {e}^{(-5x)})}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-5{e}^{(-5x)}}{(36x + {e}^{(-5x)})} + \frac{36}{(36x + {e}^{(-5x)})}\right)}{dx}\\=&-5(\frac{-(36 + ({e}^{(-5x)}((-5)ln(e) + \frac{(-5x)(0)}{(e)})))}{(36x + {e}^{(-5x)})^{2}}){e}^{(-5x)} - \frac{5({e}^{(-5x)}((-5)ln(e) + \frac{(-5x)(0)}{(e)}))}{(36x + {e}^{(-5x)})} + 36(\frac{-(36 + ({e}^{(-5x)}((-5)ln(e) + \frac{(-5x)(0)}{(e)})))}{(36x + {e}^{(-5x)})^{2}})\\=&\frac{-25{e}^{(-10x)}}{(36x + {e}^{(-5x)})^{2}} + \frac{360{e}^{(-5x)}}{(36x + {e}^{(-5x)})^{2}} + \frac{25{e}^{(-5x)}}{(36x + {e}^{(-5x)})} - \frac{1296}{(36x + {e}^{(-5x)})^{2}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{-25{e}^{(-10x)}}{(36x + {e}^{(-5x)})^{2}} + \frac{360{e}^{(-5x)}}{(36x + {e}^{(-5x)})^{2}} + \frac{25{e}^{(-5x)}}{(36x + {e}^{(-5x)})} - \frac{1296}{(36x + {e}^{(-5x)})^{2}}\right)}{dx}\\=&-25(\frac{-2(36 + ({e}^{(-5x)}((-5)ln(e) + \frac{(-5x)(0)}{(e)})))}{(36x + {e}^{(-5x)})^{3}}){e}^{(-10x)} - \frac{25({e}^{(-10x)}((-10)ln(e) + \frac{(-10x)(0)}{(e)}))}{(36x + {e}^{(-5x)})^{2}} + 360(\frac{-2(36 + ({e}^{(-5x)}((-5)ln(e) + \frac{(-5x)(0)}{(e)})))}{(36x + {e}^{(-5x)})^{3}}){e}^{(-5x)} + \frac{360({e}^{(-5x)}((-5)ln(e) + \frac{(-5x)(0)}{(e)}))}{(36x + {e}^{(-5x)})^{2}} + 25(\frac{-(36 + ({e}^{(-5x)}((-5)ln(e) + \frac{(-5x)(0)}{(e)})))}{(36x + {e}^{(-5x)})^{2}}){e}^{(-5x)} + \frac{25({e}^{(-5x)}((-5)ln(e) + \frac{(-5x)(0)}{(e)}))}{(36x + {e}^{(-5x)})} - 1296(\frac{-2(36 + ({e}^{(-5x)}((-5)ln(e) + \frac{(-5x)(0)}{(e)})))}{(36x + {e}^{(-5x)})^{3}})\\=&\frac{-250{e}^{(-15x)}}{(36x + {e}^{(-5x)})^{3}} + \frac{5400{e}^{(-10x)}}{(36x + {e}^{(-5x)})^{3}} + \frac{375{e}^{(-10x)}}{(36x + {e}^{(-5x)})^{2}} - \frac{38880{e}^{(-5x)}}{(36x + {e}^{(-5x)})^{3}} - \frac{2700{e}^{(-5x)}}{(36x + {e}^{(-5x)})^{2}} - \frac{125{e}^{(-5x)}}{(36x + {e}^{(-5x)})} + \frac{93312}{(36x + {e}^{(-5x)})^{3}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !