There are 1 questions in this calculation: for each question, the 3 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ third\ derivative\ of\ function\ -24{e}^{(-4x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -24{e}^{(-4x)}\right)}{dx}\\=&-24({e}^{(-4x)}((-4)ln(e) + \frac{(-4x)(0)}{(e)}))\\=&96{e}^{(-4x)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 96{e}^{(-4x)}\right)}{dx}\\=&96({e}^{(-4x)}((-4)ln(e) + \frac{(-4x)(0)}{(e)}))\\=&-384{e}^{(-4x)}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( -384{e}^{(-4x)}\right)}{dx}\\=&-384({e}^{(-4x)}((-4)ln(e) + \frac{(-4x)(0)}{(e)}))\\=&1536{e}^{(-4x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !