There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{kx}{sqrt(ln(x))} - \frac{k(x - s)}{sqrt(ln(x - s))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{kx}{sqrt(ln(x))} - \frac{kx}{sqrt(ln(x - s))} + \frac{ks}{sqrt(ln(x - s))}\right)}{dx}\\=&\frac{k}{sqrt(ln(x))} + \frac{kx*-\frac{1}{2}}{(ln(x))(x)(ln(x))^{\frac{1}{2}}} - \frac{k}{sqrt(ln(x - s))} - \frac{kx*-(1 + 0)*\frac{1}{2}}{(ln(x - s))(x - s)(ln(x - s))^{\frac{1}{2}}} + \frac{ks*-(1 + 0)*\frac{1}{2}}{(ln(x - s))(x - s)(ln(x - s))^{\frac{1}{2}}}\\=&\frac{k}{sqrt(ln(x))} - \frac{k}{2ln^{\frac{3}{2}}(x)} - \frac{k}{sqrt(ln(x - s))} + \frac{kx}{2(x - s)ln^{\frac{3}{2}}(x - s)} - \frac{ks}{2(x - s)ln^{\frac{3}{2}}(x - s)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !