There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ -24{e}^{(-2x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -24{e}^{(-2x)}\right)}{dx}\\=&-24({e}^{(-2x)}((-2)ln(e) + \frac{(-2x)(0)}{(e)}))\\=&48{e}^{(-2x)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 48{e}^{(-2x)}\right)}{dx}\\=&48({e}^{(-2x)}((-2)ln(e) + \frac{(-2x)(0)}{(e)}))\\=&-96{e}^{(-2x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !